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LETTER TO THE EDITOR 
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Absbait, The influence of B layered aperiodic modulation of the couplings on the critical 
behaviour of the two-dimensional king model is studied in the case of marginal perturbations. 
The =periodicity is found to induce anisotropic scaling. The anisotropy exponent L, given by the 
sum of the surface magnetivtion scaling dimensions, depends continuously on the modulation 
amplitude. Thus these systems are scale invariant but not conformally invariant at the critical 
point. 

The critical behaviour of quasiperiodic or aperiodic systems is better understood since 
Luck recently proposed a relevance-irrelevance criterion [I] .  As in thk Harris criterion for 
random systems [Z], the strength of the fluctuations of the couplings, on a scale given by 
the correlation length, is of primary importance for the critical behaviour. Thus an aperiodic 
perturbation can be relevant, marginal or irrelevant, depending on the sign of a crossover 
exponent involving the correlation length exponent of the unperturbed system v and the 
wandering exponent w which governs the fluctuations of the aperiodic sequence [3]. The 
criterion explains earlier results (for references see [I])  and has been confirmed in recent 
work on the layered 2D Ising model [MI. 

In this letter, we report on some recent results supporting the occurrence of anisotropic 
scaling in the two-dimensional layered king model with a marginal aperiodic modulation 
of the exchange interactions. 

We consider a system with a constant interactior. K j  along the layers and aperiodically 
modulated interactions Kz(k)  (in ksT units) between neighbouring layers at k and k + 1. 
In'the extreme anisotropic limit, K I  + 03, Kz(k)  + 0, the row-to-row transfer operator 
involves the Hamiltonian of a quantum king chain [7] 
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where the us are Pauli spin operators and the coupling Ah is given by the ratio 
-2Kz(k)/In(tanh K1). For the aperiodic system, we use the parametrization hk = Arb 
where fk takes the values 0 or 1 given by an aperiodic sequence which is constructed 
through substitution. 

In the following, we shall consider: 

the period-doubling sequence IS] with the substitutions S(1) = 1 0, S(0) = 1 I ,  so 
that, after n iterations, one obtains 

n = O  1 

n = l  1 0  

n = 2  1 0 1  1 

n = 3  1 0 1  1 1 0 1 0  

the paper-folding sequence [9] with the two-digit substitutions S(l 1) = 1 1 0 1, 
S(l 0) = 1 1 0 0, S(0 1) = 1 0 0 1, S(0 0) = 1 0 0 0, leading to 

n=O 1 1  

n = l  1 1 0 1  

n = 2  1 1 0  1 1 0 0  1 

n = 3  l l o l l o o l l l o o l o o l  

(3) 

the three-folding sequence [lo] which follows from the substitutions S(0) = 0 1 0, 
S(l) = 0 1 1, giving 

n=O 0 

n = l  0 1 0  

n = 2  O l O O l l O l O  

n = 3  0 1 0 0 1 1 0 1 0 0 1 0 0 1 1 0 1 1 0 1 0 0 l 1 0 1 0  

(4) 

Most of the properties of a sequence can be deduced from its substitution matrix [ l l ]  
with entries M,j given by the numbers of digits (or pairs) of the different types in the 
substitutions. 

On a chain with length L, the fluctuations of the couplings can be measured through 
the cumulated deviation from their average x, which behaves as [3] 

Here 6 = h(r - 1) is the amplitude of the modulation. The wandering exponent o is given 
by the ratio 

where A I  is the largest and AZ the next-to-largest eigenvalue of the substitution matrix. 
F ( x )  is a fractal periodic function of its argument with period unity 131. 
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Under a change of the length scale by b = L/L', the amplitude 6 is changed into [4] 

(7) 6' = bw-l+l/" 6 

where v is the correlation length exponent. This leads to the Luck criterion [ I ,  12, 131 
according to which the aperiodic perturbation is relevant (irrelevant) when w > (c) 1 - I/v. 
On the border, where w = 1 - I / v ,  the perturbation is marginal and leads to !-dependent 
exponents. For the ZD king model with v = 1, marginal behaviour is expected for w = 0 
which is the value of the wandering exponent for the three sequences mentioned above. 

The surface magnetization of the Ising quantum chain takes the simple form [14] 

Here Ac = r-0- is the critical coupling [ 15,4] and pm is the asymptotic density of the digit I 
along the sequence. The surface magnetization exponent fls ='x,,. where x, is the scaling 
dimension of the suiface spins, since v = 1. The surface magnetization can generally be 
evaluated recursively 141 and the critical exponent is obtained using a finite-size-scaling 
method '[16]. This has been done for the period-doubling sequence for which [4] 

,. ~~A - -213 (period-doubling) 
- In (A:/* + A;'/') 

xms = x, = c - ~  21n2 

where is the exponent on the surface Corresponding to the right-hand end of the sequence. 
The period-doubling sequence in (2) is symmetric. if one ignores the last digit which does 
not influence the critical behaviour. As a consequence x, = z, i.e. the surface exponents 
are the same on both sides. 

Similar calculations for the two last sequences give the following results [17]: 

- -112 (paper-folding) (IO) 

kc = r-'I2 (threefolding) . ( 11) 

In(1 +A:) - In ( I  + A;~) 

In (2 + A;*) L In (2 + A:) 
21n2 ' 

21113 

x, = 
21112 

21n3 

Xms = 

Xms = xms = 

where the values for the right-hand surface are obtained by changing r into r-' since, except 
for the last digit, viewed from the right-hand side the sequences in (3) and (4) are obtained 
by exchanging 0 and 1. Similar expressions, involving K I  and K2. are obtained on the 
corresponding 2D classical systems [IS]. 

The excitation spectrum of the Hamiltonian (1) has been studied numerically for the three 
marginal sequences given abovei. A quadratic fermion Hamiftonian is first obtained via the 
Jordan-Wigner transformation [22],' which is diagonalized using standard methods [23]. At 
the critical point, the low-lying fermion excitations 6, are found to scale with the size of 
the system L as 

(12) 
~- , 

t-n - L-2 z = x,, + G. 

t Although the svuaure of the spectra of aperiodic Ising quantum chains his already been studied 119-21. I]. 
either the aperiodicity was m'irrelevant perturbation or the scaling behaviour w 3 ~ ~ n o t  discussed. 



L168 Letter to the Editor 

O r  

1 
-4 c -I 

I 2 3 4 5 6 7 
In L 

Figure 1. Log-log plots of the first excitation energy € 1  versus the length L of the chain for the 
paper-folding sequence with periodic boundary conditions and different values o l r .  The slopes 
-: are taken for values of L equal to Zn (0), which correspond to a constant amplitude. 

Table 1. Extrapolated finite-size estimates for the exponent L. obtained from the fermion 
excitations cn for the period-doubling sequence. The figures in brackets give the estimafed 
uncertainty in the last digit. 

r € 1  

5.0 1.19834(5) 
I .  198 36i2j 

4.0 1.14885(1) 
1.14884(1) 

3.0 1.09465(1) 
1.09465(1) 

2.0 1.038 17(5) 
1.038 l(1) 

0.5 1.038 l(2) 
1.038 1(1) 

€2 €3 €4 €5 €6 Expected 

1.198 36( I )  1.198 3 5 7 6  1.198 36( I) 1.19836(1) 1.198 355(5) 1,198 356 
I. 198 35( I )  I. 198 35(2) I. I98 357(5) I. 198 359(4) 1.198 364(4) 
1.14884(2) ' 1.148842(4) 1.148845(2) 1.14884(1) 1.148844(4) 1.148844 
1.14884(1) 1.148842(3) 1.148 84(l) 1.148844(3) 1.148 84( I )  
1.094&18(4) 1.094649(4) 1.094647(3) 1.09465(1) 1.094651(2) 1,094649 
1.094654(2) 1.094653(3) 1.094 647(3) 1.094648(4) 1.094647(3) 
1.03817(2) 1.038?0(5). 1.003817(4) 1.03817(4) ' 1.038 17(1) 1.038 170 
1.038 17(1) 1.038 172(6) 1.038 174(5) 1.038 172(3) 1.038 171(2) 
1.038 14(5) 1.038 15(5) 1.038 15(5) 1.038 Iq2)  1.038 16(1) 1.038 170 
1.038 16(3) 1.038 170) 1.0381(1) 1.0381(1) 1.038 17(l) 

The same behaviour is obtained for free and periodic boundary conditions [17,18,,24]. 
The oscillations around the power iaws, as shown for the paper-folding sequence on 

figure 1, are due to a periodic prefactor which, like F ( x )  in (9, is a function of In L/ In A , ,  
Oscillating amplitudes are obtained for other critical quantities as well. When the size of 
the system goes to infinity, L is replaced by the correlation length -t-' near the critical 
point, and the argument of the fractal function involves the ratio In t/  In A I .  

In table 1 we give finite-size estimates forr, supporting (9) and (12),which were obtained 
from sequence extrapolation using the BST algorithm (see [25]). Chains of size L = 2" + 1 
up to n = 20 with free boundary conditions were used. For a given r ,  the first line in table 1 
refers to data with n even, while the second line refers to n odd. Even and odd values of 
n give a different amplitude since the period of the fractal function is 2 in this case. 

The behaviour of the excitation spectrum in (12) is typical of a strongly anisotropic 
system [26] with a correlation length exponent U! = zv in the time direction (i.e. along the 
layers). In the transverse direction, the correlation length exponent keeps its unperturbed 
value U = I since otherwise the perturbation would not remain marginal. Although 
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F i p r e  2. Anisotropy exponent z 3s a function of the strength r of the aperiodic modulation for 
the penod-doubling (full cune), three-folding (broken cunc) md pqm-folding (doned curw) 
sequencer. 

anisotropic critical behaviour is rather common, what is remarkable here is the occurrence 
of a continuously varying anisotropy z = z(r)  (see figure 2). The anisotropy is also implicit 
in Luck's finite-size calculation of an effective sound velocity [I]. 

The singular part of the bulk energy density is found numerically to scale like L-' at 
the critical point so that its scaling dimension is given by 

x, = xmg +G (13) 

in agreement with anisotropic scaling for the bulk free energy density [26] 

f ( t ,  L) = b-cl+zlf(bl/"t,L/b) (14) 

where t is the deviation from the critical'coupling as defined in (8). From (14), the specific 
heat exponent is given by 

01 = 1 --z = 1 -xms -x, (15) 

a relation which is indeed verified numerically for the period-doubling sequence. It takes a 
negative value since thesurface magnetization exponents are always greater than i, the pure 
system value: the aperiodic modulation of the coupling weakens the critical singularities. 
One has to notice that the proposed analytical expression for the specific heat exponent 
of the period-doubling sequence, which is obtained.by combining (9) and (E), leads to 
n % -A2/ln2 for a weak perturbation where A2 = pm(l - p,)(lnr)* in our notation. 
This disagrees with Luck's numerical results, which involved a supplementary scaling 
assumption [I]. 

On a semi-infinite system, using a finite-size scaling argument [17], the scaling 
dimensions x, of the surface energy density on the left surface can be related to the 
dynamical exponent z and the corresponding surface magnetization exponent. It is given by 

(16) Xes = z + 2xms 



L170 Letter to, the Editor 

which agrees with the numerical results. A similar expression is obtained on the right 
surface. 

According to anisotropic scaling [26],  the critical spin-spin correlation function on the 
left surface is expected to behave as 

At the critical point t = 0, the decay exponent is given by 2xms/z = 2x,/(xm, + G) 
instead of Zx,, for an isotropic system. Such a modified decay has been obtained on the 2D 
classical system 1181 as well as for the quantum chain [17]. When the sequence is symmetric 
the decay exponent is equal to 1, i.e. it is the same as for the unperturbed system. Such a 
behaviour is indeed obtained with the period-doubling sequence. 

Marginal aperiodic pertuibations of the king quantum chain have been shown to 
induce strongly anisotropic critical behaviour. The anisotropy exponent z ,  which is found 
numerically to be the sum’ of the surface magnetization scaling dimensions x, and g, 
varies continuously with the amplitude of the aperiodicity. The values of  other bulk and 
surface exponents have been conjectured on the basis of numerical results and scaling 
assumptions. The bulk magnetic behaviour remains to be studied. Details will be given in 
forthcoming publications [17,18,24] 
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